Pathwise Construction of Stochastic Integrals
نویسنده
چکیده
We propose a method to construct the stochastic integral simultaneously under a non-dominated family of probability measures. Pathby-path, and without referring to a probability measure, we construct a sequence of Lebesgue-Stieltjes integrals whose medial limit coincides with the usual stochastic integral under essentially any probability measure such that the integrator is a semimartingale. This method applies to any predictable integrand.
منابع مشابه
Pathwise Solution of Anticipating Sde with Mixed Driving
Stochastic diierential equations in R n with random coeecients are considered where one continuous driving process admits a generalized quadratic variation process. The latter and the other driving processes are assumed to possess sample paths in the fractional Sobolev space W 2 for some > 1=2. The stochastic integrals are determined as anticipating forward integrals. A pathwise solution proced...
متن کاملIntegration in a Normal World: Fractional Brownian Motion and Beyond
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Lauri Viitasaari Name of the doctoral dissertation Integration in a Normal World: Fractional Brownian Motion and Beyond Publisher School of Science Unit Department of Mathematics and Systems Analysis Series Aalto University publication series DOCTORAL DISSERTATIONS 14/2014 Field of research Mathematics Manuscript submitted 12 ...
متن کاملPathwise stability of likelihood estimators for diffusions via rough paths
We consider the estimation problem of an unknown drift parameter within classes of non-degenerate diffusion processes. The Maximum Likelihood Estimator (MLE) is analyzed with regard to its pathwise stability properties and robustness towards misspecification in volatility and even the very nature of noise. We construct a version of the estimator based on rough integrals (in the sense of T. Lyon...
متن کاملStochastic differential equations with fractal noise
Stochastic differential equations in R with random coefficients are considered where one continuous driving process admits a generalized quadratic variation process. The latter and the other driving processes are assumed to possess sample paths in the fractional Sobolev space W β 2 for some β > 1/2. The stochastic integrals are determined as anticipating forward integrals. A pathwise solution p...
متن کاملStochastic functional population dynamics with jumps
In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...
متن کامل